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ABSTRACT 

The concepts of primitive ideal and semicocritical module with respect to a 
torsion theory are studied and related to the structure of torsionfree injective 
modules. Applications are made to the study of (1) composition series with 
respect to a torsion theory and (2) the structure of endomorphism rings of 
torsionfree modules. These results are natural generalizations of the properties 
of certain modules over (noetherian) rings with Krull dimension. 

Throughout  this paper,  R will always denote a ring with identity element,  

all modules will be unital left R-modules ,  and ~" will be an hereditary torsion 

theory of modules with torsion class 3- and torsionfree class ~. Then 

~ = {I C_ R I R / I  E 3-} will be the filter associated with r, and J ( R )  will denote 

the torsion submodule of R. A submodule N of a module M is called r-closed in 

M if M / N E  ~. The T-closure of a submodule N of M is C L ( N )  = 

{x E M ] annRx E ~,};  hence C L ( N )  is r-closed in M. Finally, a module M is 

r-cocritical if M E f f  and M / N  E 3- for each nonzero submodule N of M. For 

these definitions and their properties,  the reader is referred to [1] or [9]. 

In [4] Boyle and Feller study modules over a ring with Krull dimension a. In 

particular, they obtain information about certain modules through the use of an 

ascending series of modules called the semicritical socle series. Annihilators of 

a-critical modules are called a-coprimit ive ideals and are closely related to the 

structure of certain injective modules. 

Our first two sections are devoted to generalizing the basic theory of [4] from 

modules over  rings with Krull dimension to modules that are torsionfree with 
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respect to an hereditary torsion theory r. In particular, we define ~'- 

semicocritical and r-primitive ideals based on the corresponding Krull dimen- 

sion concepts. (Note that we use the dual terminology in order to make our 

definitions coincide with standard torsion theory terminology.) Our definition of 

~'-semicocritical also agrees with the one defined by Lau [13] and Golan [11 ]. We 

obtain an ascending series from the z-semicocritical modules analogous to [4] 

and compare this series to the standard z-cocritical socle series (e.g., see [6]). 

The ~'-primitive ideals are the annihilators of the ~--cocritical modules; their 

properties are examined in Section 2~ 

In the last two sections, we apply our basic results from Sections 1 and 2 to the 

study of r-composition series and endomorphism rings. A module M E o~ has a 

~'-composition series if there exists a chain 0 = Mo _C M~ C_ • • • C M, = M such 

that M~/M~_~ is z-cocritical for each i = 1,2 . . . . .  n; the least possible such 

integer n is denoted by l,(M) and is called the r-length of M, and the nonzero 

quotients M~/M~ 2 are called the factors of the r-composition series. This type of 

series has been studiedextensively; e.g., see 12], [3], [10], [12], [13], and [17]. Our 

examination of the factors of a r-composition series uses both the z- 

semicocriticai socle series and the theory of r-primitive ideals. The concept of 

linkage for ideals and injective modules over a noetherian ring (see I14]) is 

extended to the torsion theory setting; this linkage concept proves useful both 

for studying r-composition series and endomorphism rings of modules in ~-. We 

extend some results of Boyle and Feller [5] about endomorphism rings of 
injective modules over a noetherian ring to the torsion theory case over a 

general ring. We obtain a bound on the index of niipotency of ideals that can be 

used in cases not covered by [11, Proposition 2.3]. Our endomorphism results 

also relate to some results of [1] and [8]. 

1. z-semicocritical modules 

A module M will be called z-semicocritical if there exists a finite set 

Kt, K2 . . . . .  K, of submodules of M such that n~=~Ki = 0  and M/Ki is ~'- 

cocriticai for each i = 1,2 . . . . .  n. This concept is closely related to the idea of an 

a-critical module in the study of Krull dimension (e.g., see [4] and its references) 

and also agrees with the definition in Ill] and [13]. 

In this section we continue the study of r-semicocritical modules that was 

begun in [11] and [13]. After developing the basic properties of z-semicocriticai 

modules, some of which can be found in [13], we introduce the z-semicocritical 

socle and compare it to the commonly studied z-socle; i.e., the ~'-closure of the 
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sum of the z-cocritical submodules. For later applications, we will be especially 

concerned with torsion theories for which R has DCC on r-closed left ideals. 

Before stating our first result, we need one more definition. A module M is 

called T-full if M / N  E J- whenever N is essential in M. Lau studied this 

condition in [13], but we will refer to the later paper [11] for the basic properties 

of z-full modules due to the relative inaccessability of [13]. 

PROPOSITION 1.1. A R-module M is z-semicocritical if and only if the 
following conditions hold" 

(1) M has DCC on r-closed submodules; 
(2) M E i f ;  

(3) M is r-full. 

PROOf. ( ~ )  By (1) and (2) M is finite dimensional; hence there exist uniform @" modules U~ (i = 1,2 . . . . .  n) such that ~=1 U~ is essential in M. For each i, 

choose submodules K~ of M maximal with respect to K ~ _ ~ j U ~  and 

K~ N U~ = 0. Then U~ is isomorphic to an essential submodule of M/K~ for each 

i; so M/K~ E ~ for each i. By [11, Prop. 1.1] each M/K~ is z-full and hence 
n 

z-cocritical. Clearly, n ~=~ K~ = 0. 

( ~ )  Let M/K~ be z-cocritical, and let n~=l K~ = 0. We may assume that n is 

minimal. Since ~ is closed under direct products and submodules, then (2) 

follows from the exact sequence 

n 

O ~  M ~ ~ I-I M/Ki. 
i = l  

By the minimality of n, the restriction of the projection map 

to a(M) has nonzero kernel. Hence a ( M ) n  (MIK~)~ 0 for each i =  n. Let N 

be essential in M. Then a ( N ) O ( M / K ~ ) ~ O  for each i. Since each M/K~ is 

z-cocritical, it follows that a ( N )  is essential in IJ?=~M/K~. Thus M / N =  
a(M)Ia(N)C_ (II?=~ MIK~)/a(N)E ~- by [10, Prop. 1.2]. Hence M is z-full; i.e., 

(3) holds. Finally, since M ~ - a ( M ) E  .~ is contained in IIL1 M/K, and since 

1-I7=~ M/K~ has a ~-composition series, then M has a z-composition series and 

hence has DCC on z-closed submodules (see [10], [12] or [17]). 

COROLLARY 1.2. If M E ~ and if M is z-full, then the following statements are 
equivalent. 

(1) M is z-semicocritical. 
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(2) M has DCC on z-closed submodules. 

(3) M is finite dimensional. 

COROLLARY 1.3. Any submodule of a z-semicocritical module is z- 

semicocritical. 

COROLLARY 1.4. Let N~ and N2 be z-semicocritical submodules of a module 

M. Then N~ + N2 is ~'-semicocritical if and only if NI + N2 E ~. 

COROLLARY 1.5. If N1 and N2 are ,r-semicocritical submodules of M E ~, 
then Nt + N2 is ~'-semicocritical. 

The ~'-semicocritical modules are closely related to the z-cocritical modules. 

In fact, a module is r-semicocritical if and only if it can be embedded in a direct 

sum of finitely many r-cocritical modules. In the remainder of this section, we 

explore this relationship further. 

PROPOSITION 1.6. A nonzero r-semicocriticai module always contains a non- 

zero z-cocritical module. 

PROOF. Let M be a nonzero ~--semicocritical module. Then M is finite 

dimensional by Corollary 1.2; so M contains a nonzero uniform module U. By 

Corollary 1.3, U is z-semicocritical. Since U is also uniform, it must be 

~'-cocritical. 

We define the following two submodules of a module M: 

S~(M) = ~ {N l N z-cocritical, N C M} 

and 

Sc,(M) = ~ {N l N z-semicocritical, N C M}. 

The modules S~(M) and Sc,(M) are called the ~'-cocritical socle and the 

~'-semicocritical socle, respectively. Since every ~--cocritical module is r- 

semicocritical, then S,(M)C_ Sc~(M). In [4, Example 2.5], Boyle and Feller give 

an example of a torsion theory for which S~(R) ~ Sc,(R) = R E ~ ;  the example 

arises naturally in the study of Krull dimension over Noetherian rings. 

PROPOSITION 1.7. If  M is a module such that Sc~(M)E ~, then Sc, (M)C 

CI,(S~(M)) and hence CI,(Sc~(M)) = CL(S,(M)). 

PROOF. If 0 ~ x U S c ~ ( M ) ,  then x is contained in a sum of finitely many 

~--semicocritical modules. Hence Rx is z-semicocritical by Corollaries 1.4 and 

1.3. From Corollaries 1.2 and 1.3 and Proposition 1.6, it follows that Rx contains 



Vol. 54, 1986 MODULES 185 

r l  

a finite set of uniform submodules Ui (i = 1,2 . . . . .  n) such that ~ i = ~  U~ is 

essential in Rx. Since Rx is r-full, then Rx/(~7=~ U~)E3-. Hence x E 

Cl,(GT , u,)c (s, (M)). 

COROLLARY 1.8. If M is a module with Sc , ( M) E  ~, then every nonzero 

submodule of Sc,(M) contains a nonzero r-cocritical module. 

PROOF. Let N be a submodule of Sc,(M), and let 0 ~ x E N. As in the proof 

of Proposition 1.7, Rx is r-semicocritical. So by Proposition 1.6, there exists a 

nonzero z-cocriticai module C C_ Rx C_ N. 

PROPOSITION 1.9. Suppose that the filter ~ ,  for r has a cofinal subset of finitely 
generated left ideals. If M @ ~, then Sc,(M) = CL(S~(M)). 

PROOF. From Proposition 1.7, it follows that we only need to show 

CL(S~(M))C_Sc,(M). Let 0 ~ x  E CL(S,(M)). Since M E  ~, there exists a 

finitely generated left ideal I E ~ such that 0 ~  Ix C_ S,(M). Thus Ix is finitely 

generated; so there exists a finite set C~, (?2 . . . . .  C, of z-cocriticai modules such 

that Ix C_ ET=, C~. By Corollaries 1.4 and 1.3 Ix is r-semicocritical. So by [11, 

Prop. 1.1(3)], Rx is r-full. Since RxC_CL(ET=~C) and since E?=~C is a 

homomorphic image of the module ~7=~ C, which has DCC on z-closed 

submodules, then Rx has DCC on r-closed submodules. Hence Rx is r- 

semicocriticai by Proposition 1.I. 

For a module M E .~, we can form an ascending series of submodules in a 

canonical manner. Define 

Sc°(M) = 0, SC(M)/SC-~(M) = CI.(Sc,(M/ScT-~(M))) 

when a is not a limit ordinal, and SC(M) = CL( U~<,, Sc~(M)) when a is a limit 

ordinal. We call the chain of modules SC(M) the r-semicocritical socle series for 

M. There exists a least ordinal A such that S C ( M ) =  SC*"(M) for all a ;  A is 

called the length of the series. 
If R has DCC on r-closed left ideals, then the filter Lf, for r has a cofinal 

subset of finitely generated left ideals by the results of [17] and [16]. In this case 

we have S c , ( M ) =  CL(S,(M)) for every M E  ~ by Proposition 1.9. Conse- 

quently, the r-semicocritical socle series for M E ~ agrees with a standard 

r-cocritical socle series (e.g., see [6]) and SC(M) = M for some finite ordinal h, 

whenever R has DCC on z-closed left ideals. We also have N fl S C ( M ) =  

SC(N) for each submodule N of M and each ordinal a. We shall make use of 

these facts in Sections 3 and 4. 
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2. T-primitive ideals 

An ideal D of R will be called r-primitive if D = annR C for some r-cocritical 

module C. 
In this section we study the relationships between r-primitive ideals and 

r-semicocritical modules. In case R has DCC on r-closed left ideals, we show 

each indecomposable injective module I in ,~ can be uniquely associated with a 

minimal r-primitive ideal annRS~(I)=annRScT(I). Therefore, the minimal 

r-primitive ideals can play an important role in studying injective modules in 

and their endomorphism rings. 

The results of this section can be viewed as an extension of results on rings 

with Krull dimension to torsion theories over general rings; see [4] for the Krull 

dimension case. We also note that our process of associating ideals with 

indecomposable injectives in o~ differs from [1, Section 11] and [2], where prime 

ideals are associated to injectives in o~. In particular, we see in Example 2.6 that 

a minimal z-primitive ideal need not be prime. 

We begin with an elementary lemma. 

LEMMA 2.1. The annihilator of any nonzero r-semicocritical module is a finite 

intersection of r-primitive ideals. 

PROOF. If N is r-semicocritical and nonzero, then N C_7_ O7=~ C~, where each 

C~ is r-cocritical. Let pj : (~7=~ C~ ~ C/be the projection to the j-th coordinate. 

Since each pj(N)C_ Ci, then each pj(N) is r-cocritical, and hence annRpj(N) is 

z-primitive. Since ann~N--  A,=~ annnpj(N), we are done. 

Now we relate the r-primitive ideals to the annihilators of r-semicocriticai 

socles. 

THEOREM 2.2. Let R have DCC on z-closed two-sided ideals of R, and let M 
be an R -module with Sc~(M) E ,.~. Then there exists a r-semicocritical submodule 

N of M such that 

annRSc,(M) = annRN = B~ f'l B2 fl • .- fl Bk 

where each B~ is a r-primitive ideal. 

PROOF. We may assume that M/~0;  so by Corollary 1.8, there exists a 

nonzero r-cocritical module Nm of M. Let D1 = annRN,. If D~(ScT(M))fi 0, then 

there exists a r-cocritical submodule N2 of M such that D~N2~O. Let 

D2=annR(N~+N2). Then DieD2.  If D2(ScT(M))~0, we continue in this 

manner to find r-cocritical modules N~ and annihilators D~ = 
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a n n R ( N , + N 2 + . . . + N i )  such that D, D D 2 D D ~ D . . . .  Since each D, is a 

z-closed two-sided ideal, then this descending chain must terminate.  Hence 

there is a least integer m such that D r , ( S c , ( M ) ) = 0  and D,, = 

annR (N, + • • • + N,, ). From Corollary 1.4, it follows that N = N~ + N: + • • • + Nm 

is r-semicocritical. Hence 

annR (Sc,(M)) = annR (N) = D,, 

is a finite intersection of z-primitive ideals by Lemma 2.1. 

We note that R having the DCC on z-closed two-sided ideals does not force 

Sc . (M) to be a A-module (i.e., a module with DCC on annihilators of subsets) in 

Theorem 2.2. The condition that R has DCC on r-closed left ideals does force 

modules in o~ to be A-modules. The concept of a A-module has received 

considerable study; e.g., see [1], [5], or [8]. We pursue this idea further in our 

next few results. 

LEMMA 2.3. Let I be z-primitive in R. If R has DCC on z-closed left ideals, 

then R / I  is z-semicocritical. 

PROOF. Let C be a r-cocritical module such that I = annRC. Thus 0 =  

["lx~c annR,x. Also (R/ I ) /annR,x  ~- R/annRx ~-- Rx _C C E o~; so annR,x is 

z-closed in R/1 and (R/1)/annR/~x is z-cocritical for each x E C. Since R has 

DCC on r-closed submodules and since the intersection of z-closed submodules 

is r-closed, it follows that there exists a finite set of elements x,, x2 . . . . .  x° of C 

such that 0 = n,"_, annR/~x~. Hence R / I  is z-semicocritical. 

LEMMA 2.4. Let R have DCC on r-closed left ideals, let C be a nonzero 

z-cocritical module, and let D = annR C. If C' is a nonzero z-cocritical module 

and DC' = O, then E ( C )  ~- E(C') .  

PROOF. Let D ' = a n n R C  '. By Lemma 2.3, both R / D  and R / D '  are z- 

- ~  - 0 "  C'.  Since semicocritical. For some m and n, R / D  C ~, C and R / D ' C  ~=, 

DC' = 0 by hypothesis, then D C_ D ' ;  so there exists a natural homomorphism 

f : R / D ~ R / D ' .  Since R / D  is r-full and C ' E o  ~, there exists a nonzero 

submodule X C_ R / D  such that X f3 k e r r  = 0. Let p " R / D  ~ C be a projection 

such that p ( X ) / O .  Since R / D  is r-full, so is X [11, Prop. 1.1(1)]. Hence there 

exists a nonzero WC_X such that W f q k e r p = 0  (as CEo%)  and f ( W )  P 0 .  

Since R / D '  is z-full, so is f (W) .  Choose a projection p "  R/D'---~ C' such that 

p ' f ( W )  ~ 0. Since f ( W )  is r-full and C'  E o%, there exists a nonzero submodule V 

of f ( W )  such that V fq ker p '  = 0. Thus we have p ' ( V )  _C C'  and 

O /  p ' (V)~-  f -~ (V)N W ~ - p ( f  ' ( V ) f )  W ) G  C. 
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Since C and C' are r-cocritical, they are uniform. But uniform modules with 

isomorphic nonzero submodules have isomorphic injective hulls; i.e., 

E(C)~- E ( p ( f - ' ( V ) N  W))=  E ( p ' ( V ) ) =  E(C'). 

PROPOSmON 2.5. Let R have DCC on r-closed left ideals. If I is an indecom- 

posable injective module with I E ~ and if D is a minimal z-primitive ideal such 

that a n n i D ~ 0 ,  then D = annRS,(l).  

PROOF. L e t 0 ~  x E anniD. Then Rx E ~  and Rx is a uniform R/D-module.  

Since R / D  is r-full by Lemma 2.3 and Proposition 1.1, then Rx contains a copy 

of a left ideal K of R/D.  By Corollary 1.3, K is r-semicocritical. But since K is 

uniform, then K must in fact be r-cocritical. By Lemma 2.4, we have 

E(C)  = E ( K )  = I for a r-cocritical module C with D = annRC; we may assume 

that C C_ I by identifying C with its image in I. Thus anne S,( l )  C_ annRC = D. 

Hence it is sufficient to show that annRS~(I) is r-primitive. 

Since I is indecomposable and I U ,,~, then any r-semicocritical submodule of 

I is r-cocritical; thus Sc , (M)=  S,(M). It now follows from Theorem 2.2 that 

annaSc~(M) is r-primitive. 

As a consequence of Proposition 2.5, each indecomposable injective module 

in f f  can be uniquely associated with a minimal r-primitive ideal. We give an 

elementary example to illustrate this correspondence. 

EXAMPLE 2.6. Let ~ denote the real numbers, and let ~ be the rational 

numbers. Then let 

R = 
0 ~ 

0 0 

Let eq denote the matrix with 1 in the i, j-position and 0 elsewhere. Then R has 

four maximal (left) ideals: Mt = R(1 - e~t), M3 = R(1 - e33)+ Re23, 

M~= 0 ~ ~ ~ ~ 
0 0. ~ and M4 = 0 ~ 

0 0 9~ 0 0 0 

Let 0- be the torsion class generated by the simple modules R/Mr and R/M3. 

Since R is left semiartinian, then the corresponding torsionfree class f f  has 
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precisely two nonisomorphic indecomposable injective modules: E(R /M2)=  

Re,4/(Re44 O Soc R), where Soc R denotes the left socle of R, and E(R/M4)~- 

R/M4. Now S.(E(R/M2)) = (Re4~ n M4)[(Re44 n Soc R ) has corresponding mini- 

mal z-primitive ideal 

annRS.(E(R/M2)) = Re44 + Soc R = 
0 0 ' 

0 0 

and S.(E(R/M4)) ~ R / M ,  has corresponding minimal z-primitive ideal M4. We 

also point out that R has DCC on z-closed left ideals since R / i f ( R )  has a 

if-composition series with four nonzero factors that are isomorphic to R/M2, 

Re,if(Re33 N Soc R ), (Re44 n M,)/(Re,4 N Soc R), and R/M4. 

We end the section with two elementary lemmas on annihilators that will be 

useful in the last two sections. 

LEMMA 2.7. Let M = ~ ) j ~ A M j  be a module with Sc , (M)Eo  ~, and let 

D,, D2 . . . . .  D, be z-primitive ideals. 

(1) If (D, n D2 n - . .  n D.)(Sc.(M)) = 0, then for each j E A there exists D~ 
such that annM, D ~  0 or else SeT(M/) = 0. 

(2) If R ~  annRSc.(M) = D, n D2 O . . .  O D, and if this intersection is it- 
redundant, then [or each D~ there exists j @ A such that annMjDi ~ 0. 

(1) Let j E A. Suppose that Sc,(Mj)~ 0. Since Sc.(M~)C_ St.(M), PROOF. 

then 

(D,D2.. .D,)(Sc,(Mj))C_ (D, N Oz n . . .  n D.)(Sc,(M))= 0 

by hypothesis. If (D2D3.. .D,)(Sc,(M~))~O, then annM~D,~0. Otherwise, 

(D2D3"" D,)(Sc.(Mj))=0. Continuing in this manner, we eventually find D~ 
such that annM, D, ~ 0. 

(2) Suppose that there exists D~ such that annM,D, = 0 for all j E A. Then 
ann~Di = 0. Since 

then 

D,(D, O D2 n . . .  n D,_~ N D,+, 0 . . .  O D.)(Sc~(M)) = 0, 

(D, n D2 n . . .  n D,_, n D~+I n . . .  n D.)(Sc. (M)) = 0 .  

This contradicts the irredundancy of D1 n . . .  n D.. 
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LEMMA 2.8. Let R have DCC on z-closed le[t ideals, and let M be a module in 

~. If D~, D2 . . . .  , D, are z-primitive ideals such that 

(D, N D 2 O . . .  N D,)(Sc,(M)) = O, 

then annM(D, n D 2 O " "  O D , ) =  Sc~(M). 

PROOF. Let K = a n n M ( D t O D z N . . . O D , ) .  Since each R/D~ is z- 

semicocritical by Lemma 2.3, then R/(D, N D 2 N . . .  A D,)  must also be z- 

semicocritical. So any cyclic submodule of K is z-semicocritical by [11, Prop. 1.1] 
and Proposition 1.1. Thus K C_ Sc,(M). 

3. Applications to z-composition series 

In this section we apply our previous results to the study of the z-composition 

series of a module in o%. To aid in this, we use the radical K~(R) introduced in 

[3], [9], [13] and [t5]. The relationships of the z-composition series, the 
z-semicocritical socle series, and the z-primitive ideals are discussed. If R has 

DCC on r-closed left ideals, then the relationship of S,(I) and the indecomposa- 
ble injective I E ,~ are examined in Theorem 3.8. 

The z-radical of R, denoted by K,(R), is the intersection of all z-primitive 

ideals of R (or K . ( R ) =  R if there are no proper z-primitive ideals). The 

z-radical and its basic properties have been discussed in [3], [9], [13], and [15]. 
Every z-cocritical module is annihilated by K,(R), R/K,  ( R ) E  ,,~, and i f ( R ) C  

K~(R). If R has DCC on z-closed two-sided ideals, then K~(R) is a finite 

intersection of minimal T-primitive ideals. 

LEMMA 3.1. Let K~(R )/J-(R ) have a z-composition series with r-length n. If 
M E ~, then there exists a least integer m such that (K, (R))"M = O. 

PROOF. Since K,(R)/J-(R)  has a r-composition series of z-length n and 

since K,(R)annihilates every z-critical module, then (K~(R)),+l C_ i f (R).  Hence 

(K,(R))'÷iM C_ J-(R)M =0,  as M E  ,~. Thus a minimal integer m exists. 

We can now give a result that relates the z-semicocritical socle series of a 

module M E ~ to the z-composition series for K,(R) / f f (R) .  

THEOREM 3.2. Let R have DCC on z-closed left ideals, and let M E ~. Then 
K,(R)/~-(R) has a z-composition series, and there exists a least integer m <= 
I,(K~(R)/3(R))+ 1 such that (K , (R) ) 'M = 0 and Sc~(M) = armM(K,(R))' for 
each i = 1 ,2 , . . . ,m.  
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PROOF. Since R has DCC on z-closed left ideals, then by [17, Theorem 1.4] 

R also has ACC on r-closed left ideals. Hence R / ~ - ( R )  has a z-composition 

series by [12, Prop. 1.2]; thus K~(R) /J - (R)  also has a r-composition series. By 

Lemma 3.1 there exists a least integer m such that ( K , ( R ) ) " M  = 0. It remains to 

show that Sc~(M) = annM(K,(R)) ~ for each i =< m. 

By Lemma 2.8, annM(K,(R))-- ScT(M). From the remarks following Proposi- 

tion 1.9, we see that M / S c ~ ( M ) ~  ~. By Lemma 2.8, 

annM/sc.,M,(K, (R)) = Sc, (M/ScT(M))  = Sc~(M)/Sc~(M). 

Thus annM(K~(R))2=Sc~(M). Proceeding recursively, we see that 

annM(KT(R))' = Sc~.(M) for each i <_- m. 

PROPOSmON 3.3. If  R has D C C  on r-closed left ideals, then R has only 

finitely many minimal z-primitive ideals. 

PROOF. We may assume that r is nontrivial. Since R has DCC on r-closed 

left ideals, it follows that R has at least one minimal z-primitive ideal and that 

K~(R ) = D~ fq D2 f3 • • • f3 Dn for some finite set of minimal r-primitive ideals. 

Now let D be any minimal z-primitive ideal of R, and let D = annRC, where C 

is z-cocriticai. Then D D_ K , (R) ,  so that (D~ fq D2 fq " "  f3 D , ) C  = 0. By Lemma 

2.7, anncD~ ~ 0 for some i, and hence ann~tc~D, ~ 0. Thus D, = ann~ S~(E(C)) by 

Proposition 2.5. In particular, D~ C_ annRC = D. Since D is a minimal r-primitive 

ideal, we must have D~ = D. 

REMARK 3.4. If R has DCC on r-closed left ideals, then R / K , ( R )  has a 

r-composition series and R has finitely many minimal z-primitive ideals 

D~,D2 . . . . .  D, by Proposition 3.3. By using Proposition 2.5 and results of 

Goldman [12], it is possible to show that L ( R / K , ( R ) ) =  E~'=~ I , (R/D,) .  

REMARK 3.5. In view of Propositions 3.3 and 2.5 and Lemma 2.4, we see that 

if R has DCC on z-closed left ideals, then there are only finitely many 
nonisomorphic indecomposable injective modules in ~. 

Next we find some relationships between the r-primitive ideals and modules 

with a z-composition series. 

PROPOSITION 3.6. Let D be a r-primitive ideal of R, and let M E ~ be a 

module with a z-composition series. I f  D annihilates a nonzero z-cocriacal factor 

in a r-composition series for M, then D annihilates a nonzero submodule of 

Sc~M)/Sc~-~(M) for some i. I f  R has D C C  on z-closed left ideals and if D is a 
minimal z-primitive ideal of R, then the converse holds. 



192 M.L.  TEPLY Isr. J. Math. 

PROOF. 

M. Since 

Suppose that D annihilates a factor C in a z-composition series for 

0 C Sc,(M) C Sc2,(M) C . . .  C ScT(M) = M 

is a chain of z-closed submodules of M, then the chain can be refined to a 

z-composition series 

0 = MoCMI C M 2 C " "  CM,, = M. 

By results of [12], E(C)  = E(M~ IMp-l) for some i. Let t be the largest integer 

such that Sc~(M)C_M~_~. Then M~ C_Sc',*I(M). Choose x E M~-M~_t. From 

Corollaries 1.4 and 1.3, it follows that A =(Rx  +Sc',(M))/Sc~M) is z- 

semicocritical. Let B = ((Rx O M~-t) + Sc~M))/Sc',(M). Then 

A / B  = (Rx + Sc~M))/((Rx O M~_~) + Sc~(M)) 

= (Rx + Sc',(M))/((Rx + Sc~(M)) n M,_,) 

= (Rx + M,_O/M,_~ c_ M,/M,_, E ~. 

Since A is z-semicocritical (and hence z-full), then B is not essential in A. 

Hence A has a nonzero submodule C'  such that C'  is isomorphic to a submodule 

of M~/M~_~. Let C" be the nonzero submodule of C'  that is carried into C under 

the mappings C'--->E(M,/M~_1)=E(C). Then D annihilates C" and C"C_ 
Sc'~÷'(M)/Sc',(M) as desired. 

Conversely, assume that D is a minimal z-primitive ideal and that D 

annihilates a nonzero submodule C of Sc~(M)ISc~-I(M). We may assume that C 

is z-cocritical by Corollary 1.8. Let N/Sc~-I(M) = CI,(C) in MISc~-~(M). Then 

0 C_ Sci,-~(M) C N C_ Sc~(M) C_ M 

can be refined to a z-composition series of M, and N/Sc~-~(M) is a factor in this 

z-composition series. Then C C_ N/Sc~-~(M)C E(C) ;  so D = annR S, (E(C))  by 

Proposition 2.5. Hence D annihilates the factor NISc~-~(M) as desired. 

Let R have DCC on z-closed left ideals, and let 0 ~ M E ~. By Theorem 3.2, 

there exists a finite z-semicocritical socle series of M: 

M = ScT(M) D ScT-~(M) D . . .  D Sc,(M) D 0. 

If D is a z-primitive ideal, then we say that D is linked to M at the i-th layer of 

M if D annihilates some nonzero submodule of Sc~M)/Sc~-~(M), where 

1 _-< i < n. Then we say that D is linked to M if D is linked to the i-th layer of M 
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for some i. This definition is motivated by the corresponding definition of a 

prime ideal linked to an injective module over a noetherian ring [14] and of an 

a-coprimitive ideal linked to a module over a ring with Krull dimension a [5]. 

THEOREM 3.7. Let R have DCC on ~'-closed left ideals, let D be a z-primitive 
ideal of R, and let M E ~. Then D annihilates a nonzero factor in a z-composition 
series of a cyclic submodule of M if and only if D is linked to M. 

PROOF. If D is linked to M, then there exists i_- > 1 and a cyclic 

module Rx C_Sc~(M) such that RxtZ'Sc~-Z(M) and D annihilates 

(Rx + Sc~-1(M))/Sc~-~(M). Since R has DCC on z-closed left ideals, it follows 

from [17, Theorem 1.4] and results of Goldman [12] that Rx has a r-composition 

series. Note that Rx = Rx N Sc~(M) and Sc~(Rx)  = Rx A Sc~T-1(M), so that 

O ~ Rx /Sc~T-I(Rx ) E ,~ and D(Rx  /Sc~-~(Rx )) -- 0. Since Rx has a z-composition 

series, then any chain of z-closed submodules can be extended to a z- 

composition series; so D annihilates all the factors of the z-composition series 

that are between Sci~-~(Rx) and Rx. 
Conversely, assume that D annihilates a factor in a z-composition series of 

some cyclic module Rx C_ M. (Note that every cyclic module in ~ has a 

z-composition series by the results of [17] and [12].) Applying Proposition 3.6 to 

Rx, we see that D annihilates a nonzero submodule A of Sc~Rx)/Sc~-l(Rx) for 

some i. Consider the natural homomorphism 

f : Sc~Rx)/Sc', -l(gx)--* Sc~M)/Sc'~-~(M). 

Since 

Sc~(Rx) O Sc~ ' (M)= (Rx N Sc;(M))N Sc~ ' (M)= Rx N Sc71(M) = Sc',-~(Rx), 

then f is 1 - 1. Hence Sc~M)/Sc~-~(M) contains a copy of A, and thus D is linked 

to M. 

We shall pursue the idea of linkage further in our study of endomorphisms. 

But next we wish to examine the size of the z-critical socle of an indecomposable 

injective module. We recall from Proposition 2.5 that each indecomposable 

injective module I in o~ can be uniquely associated with a minimal z-primitive 

ideal D = annRS,(I), provided that R has DCC on z-closed left ideals. 

THEOREM 3.8. Let R have DCC on z-closed left ideals, and let I be an 
indecomposable injective module in ~ with associated minimal z-primitive ideal 
D. Then S, ( I )~  I if and only if D annihilates a nonzero z-cocritical factor in a 
z-composition series of K,(R)/~ ' (R) .  Consequently, S,(I)f i  I if and only if 
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I --- E (C), where C is a nonzero r-cocritical factor in some r-composition series for 
K,(R)/J-(R). 

PROOF. First, suppose that S , ( I ) ¢  I. If K,(R)I = 0, then by Lemma 2.8, we 

have I=annlK,(R)=Sc, ( I )=S,( I ) ,  which is a contradiction. Therefore,  

K,(R) I¢  O. Since R has DCC on z-closed left ideals, then K,(R)/3-(R) has a 

z-composition series (which is non-trivial as ~- (R)I  = 0). Let 

K.(R)=Mk DMk , D . . . D M ,  DMo= ff(R) 

such that each M~/M~_~ is z-cocriticai, and let D~ be the minimal r-primitive 

ideal associated with E(M~/M~_I) for each i (1 =<i=< k). Now 

DIDzD3...  DkK,(R)IC_ J-(R)I =0 ,  and thus annIDj~ 0 for some j =< k. By 

Proposition 2.5, D i = annR(S, ( I ) )=  D, and thus D annihilates M,/Mi-, .  

Conversely, suppose that D annihilates a nonzero r-cocritical factor in a 

z-composition series for K,(R)/3-(R). Let S,/3-(R)= Sc;(K,(R)/3-(R)) for 

each i => 0. By Proposition 3.6 D annihilates a nonzero submodule C = B/Si_~ of 

some S~/S~_I. Without loss of generality, we may assume that C is r-cocritical. 

By Lemma 2.4, E(C)= I, and thus it suffices to show that ST(E(C) )~  E(C). 
In order to obtain a contradiction, we assume that S~(E(C) )=  E(C). Then 

K,(R)E(C) = 0. Thus E(C)is a R/S,_,-module and is the injective hull of C as 

an R/S~_rmodule. Since B C_ K,(R), we also have CE(C)=O. If J@  ~- is 

indecomposable and injective as an R/S,_,-module, we claim that CJ = 0. For if 

not, choose x E J such that Cx~O. Since C is r-cocritical and J ~  o ~ ,  the 

mapping C--->Cx via c--->cx is a monomorphism; so J~-E(C), which is a 

contradiction. Therefore,  CJ = 0, as we claimed. Thus C annihilates every 

indecomposable injective R/S~_~-module that is in ~ as an R-module.  Since 

E(R/S~_~) is a direct sum of indecomposable injective modules in o ~ by [17, 

Theorem 1.4] and [16, Theorem 1.2], then C annihilates E(R/S~_t), which 

contradicts C ~  0. 

The last statement of the theorem follows from the first part of the theorem, 

Proposition 2.5, and Lemma 2.4. 

If R has DCC on z-closed left ideals, then the following corollary shows that 

the torsion theory is closely related to Goldie's torsion theory whenever 

Sc , ( l )  = I for each indecomposable injective module I in ~. 

COROLLARY 3.9. Let R have DCC on r-closed left ideals, and let J~, J2 . . . . .  J, 
be a complete set of representatives of the nonisomorphic indecomposable injective 
modules in ~. (See Remark 3.5.) Then the following statements are equivalent. 
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(1) S,(J~)=J~ for all i = 1,2 . . . . .  n. 

(2) KT(R)= ~-(R). 
(3) RI3-(R) is r-full. 
(4) Sc , (M) = M for all M E ~. 

PROOF. (1) ¢:>(2). This is immediate from Theorem 3.8. 

(2) ~ (3). This follows from Proposition 1.1 and the fact that R/K~(R) is 

~--semicocritical. 

(3) f f  (4). Every cyclic module in f f  is a homomorphic image of R / S ( R ) .  
Thus it follows from (3), [11, Proposition 1.1], and Proposition 1.1 that every 

cyclic module in ~ is r-semicocritical. Hence Sc , (M) = M for all M E ~. 

(4) ~ (1). Since each J~ is uniform, then Sc~(J~)=S~(J~) for each i; so 

(4) ~ (1) is trivial. 

4. Applications to endomorphism rings 

In this section, we apply our previous results to study the endomorphism rings 

of torsionfree modules over a ring with DCC on r-closed left ideals. Our main 

results use the concept of linkage, as defined in Section 3, to study the 

endomorphism rings of injective modules. We are aided in this study by the fact 

that, for a ring with DCC on r-closed left ideals, there are only finitely many 

nonisomorphic indecomposable injective modules in if'. (See Remark 3.5.) Our 

results extend from [5] the case of endomorphism rings of injective modules with 

Krull dimension over noetherian rings to the relative case over general rings. We 

also obtain a result (Theorem 4.8) that provides new information about the index 

of nilpotency of ideals of endomorphism rings as studied in Section 2 of [11]. 
We begin our study by writing Sc~(M) in terms of homomorphisms. 

PROPOSITION 4.1. Let R have DCC on z-closed left ideals, and let J,, J2 . . . . .  J, 

be a complete set of representatives o[ the nonisomorphic indecomposable injective 
modules in ~. If M E ~, then 

PROOF. Let H = { f I f E  U~=~HomR(M,J~), ke r r  essential in M}. If [ ~ H  
and N is a z-semicocritical submodule of M, then N n ker f is essential in N, and 

hence f ( N ) @  ~- by Proposition 1.1. Since f(N)C_ J~ E ~ for some i, we have 

[(N) E S O ~ = 0; so N C_ ker/.  Therefore, ScT (M) C_ O {ker f I f E H} = W. 

Write E(M/Sc~(M))~-~j~A Ij, where each /j is indecomposable and in 

(see [17, Theorem 1.4] and [16, Theorem 1.2]). For each ] ~ A, let Pi be the 
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projection to the j-th coordinate of this direct sum. Since R has DCC on 

z-closed left ideals, then ScT(M) is essential in M. Consequently, the composi- 

tion f~ 

M--> M/Sc,(M)---> E ( M / S c , ( M ) ) = ( ~  I i P' ) I, 
jEA 

has essential kernel. Since each I~ = Jk for some k, then W C_ ker/~ for each 

i E A. Hence the image of W under the composition 

M---> M/Sc,(M)---> E(M/Sc, (M))= ( ~  lj 
lEA 

is 0. Thus W C Sc, (M). 

Therefore, W = Sc,(M) as desired. 

The following consequence of Proposition 4.1 can be contrasted with Theorem 

3.8. 

COROLLARY 4.2. Let R have DCC on z-closed left ideals, and let J,, .I2 . . . . .  J, 

be a complete set of representatives of the nonisomorphic indecomposable injective 
modules in ~. Then the following statements are equivalent for a nonzero 

indecomposable injective module I in ~. 

(1) S , ( I )=  I. 
(2) For each k <= n, every nonzero homomorphism from I into Jk is an 

isomorphism. 
(3) HomR(/, I) is a division ring, and HomR(/, Jk) = 0 whenever Jk ~ I. 

PROOF. (1) f f  (2). If f E HomR (L Jk) and ker f #  0, then ker f is essential in L 

By Proposition 4.1 and (1), we have 0 = f (Sc, ( I ) )= f (S , ( I ) )=  f(I), and hence 

f=0. 
(2) f f  (3). Clear. 
(3) ~ (1). It follows from (3) that, for each k < n, f = 0 is the only map in 

HomR (/, Jk) with essential kernel. Thus by Proposition 4.1, we have I = Sc,(I) = 

s,(/). 

Before giving the main results of this section, we need two more preliminary 

results that relate the concept of linkage to homomorphisms. 

LEMMA 4.3. Let R have DCC on z-closed left ideals, let D be a minimal 
z-primitive ideal of R, let I ~ ~ be the indecomposable injective module associated 
with D, and let M E o ~. Then D is linked to the i-th layer o[ M i[ and only i[ there 

exists a nonzero homomorphism of Sc~(M)/SdT-1(M) into L 
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PROOF. Let A = Sc~M)/Sc~,-'(M). 
If D is linked to the i-th layer of M, then D annihilates a nonzero submodule 

C of A. Since R has DCC on r-closed left ideals, we may assume that C is 
r-cocritical. By Lemma 2.4, E(C)~-  I. By the injectivity of I, we can extend the 

natural embedding C--~ I to a homomorphism A--~ I. 

Conversely, suppose that f :  A --~ I is a nonzero homomorphism. If S~(A)C_ 

ker f, then CL (ker f )  = A ; so f ( A  ) E S. Since 0 ~ f ( A  ) _C I E ~, it follows that 
we cannot have S, (A)  C_ ker f. Hence there exists a r-cocritical submodule C of 

A such that C f q k e r f = 0 ,  so that C~-f(C)C_Sc~(I) .  By Proposition 2.5, 

D = annR (S, (I)). Thus DC = 0 as desired. 

If D~ and D2 are minimal z-primitive ideals and if I is the indecomposable 
injective associated with D2, then we say that D1 is linked to D2 whenever D~ is 

linked to I. 

COROLLARY 4.4. Let R have DCC on r-closed left ideals. Let D~ and D2 be 
minimal r-primitive ideals of R with associated indecomposable injective modules 
I~ and I2, respectively. Then D~ is linked to D2 if and only if HomR (I2, L ) ~  0. 

We can now give our applications of linkage to endomorphism rings of 

injective modules in ,~. 
Faith [7] gives conditions for EndR(I)  to be a division ring for any injective 

module / .  Our result gives a linkage condition for the endomorphism ring of an 

indecomposable injective module in ,~ to be a division ring. Our criterion is 

analogous to the one obtained by Boyle and Feller [5] in their study of 

noetherian rings. 

THEOREM 4.5. Let R have DCC on r-closed left ideals, let I E ~ be an 

indecomposable injective module, and let D be the minimal r-primitive ideal 
associated with I. Then the following statements are equivalent. 

(1) EndR (I)  is a division ring. 
(2) HomR (I/K, I) = 0 for each nonzero K C_ I. 
(3) HomR (I/Sc~I),  I) = 0 for each i >= 1. 

(4) D is linked to I only at the first layer. 

PROOF. (1) f f  (2) ~ (3). Clear. 
(3) f f  (4). This follows from Lemma 4.3 and the injectivity of L 

(4) f f  (1). Let J denote the Jacobson radical of End~(I) ;  then J =  

{f E E n d R ( I ) [ k e r f  is essential in I}. Since I is indecomposable, it suffices to 

show that J = 0. If 0 ~ f E J, let m be the smallest integer such that f(ScT(l)) ~ O. 
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m m - I  Then f induces a nonzero homomorphism g "Scr(I)/Sc~ ( I ) -~  L Thus D is 
linked to I at the m-th layer. By (4), we must have m = 1. Hence g is just the 

restriction of f to Sc~(I). Since k e r f  is essential in I and since I E ~, then k e r f  

contains S~(I)= Sc~(I), which contradicts our choice of M. 

n 

THEOREM 4.6. Let R have D C C  on z-closed left ideals. Let E = G j ~  Ij, 
where each Ij @ ~ is an indecomposable injective module (1 <- j ~ n ). Let D i be the 
minimal r-primitive ideal associated with ~ (1 ~ j ~ n). Then EndR(E) is 
semisimple if and only if 

(1) 191 is linked to Ij only at the first layer (1 ~ j  ~ n), and 
(2) D, is not linked to Dj unless L = Ij. 

PROOF. ( i f )  Assume that EndR(E) is semisimple. Then J =  

{ f E E n d ~ ( E ) l k e r  f is essential in E} =0.  If Dj is linked t o / j  at the i-th layer, 

then by Proposition 4.3 and the injectivity of /~ there exists a nonzero 

homomorphism f : / j /Sd~ l ( / j ) ~  lj. Hence the natural composition 

P >/j Ii ~ / j / S d .  '(/~) t 

has ker fp  _~ Sc~-'(/j). Now fp extends to a map g" E ~ E via g(a,,  a 2  . . . .  , a,)  = 

fp(aj), where a, E I, (1 =< t =< n). Thus 

kerg  = L O " ' @ / J  , O k e r f p @ I j + , f ~ ) ' " O I , .  

Since ker g cannot be essential (as J = 0), then ker fp is not essential in Ij. Since 

Si. ' ( I j )C kerfp  E ~, then we must have i = 1; i.e., (1) holds. 
If L ~ / j  and f : L ~ I j ,  then k e r f  is essential in I,. Then f extends to a 

homomorphism g • E ~ E via g ( a ,  a2 . . . . .  a,)  = f(a,), where ai E L (1 ~ i - n). 
Then ker g is essential in E. Since J = 0, then g = 0. Thus by Corollary 4.4, D, is 

not linked to Dj. 
( ~ )  By (2) and Corollary 4.4, H o m R ( L , / j ) = 0  when L~/ j .  By (1) and 

Theorem 4.5, EndR(/j) is a division ring (l =< j _-< n ). Hence EndR(E)  is 

semisimple. 

COROLLARY 4.7. Let R have D C C  on z-closed left ideals, and let 11, 12 . . . . .  I, 
be a complete set of representatives of the isomorphism classes of indecomposable 

n 

injective modules in ~. Let M = (~j=l I,. Then EndR (M) is semisimple artinian if 

and only if S. ( l j )=  I, for all j <= n. 

PROOF. Combine Corollary 4.2, Theorem 4.5, Corollary 4.4, and Theorem 

4.6. 
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Let R have DCC on r-closed left ideals, and let A be a uniform quasi- 

injective module in ~. A bound for the index of nilpotency of N = 

{f E EndR (A) ] k e r f  is essential in A } is given in [11, Prop. 2.3] whenever A E o % 
and A has the ascending chain condition of ~--closed submodules. Our next 

result provides an alternative bound in terms of linkage without using the 

ascending chain condition on r-closed submodules of A. 

THEOREM 4.8. Let R have DCC on "r-closed left ideals, let A be a uniform 
quasi-injective module in ~, let D be the minimal r-primitive ideal associated with 
E(A) ,  and let N = {f E EndR (A)I k e r / i s  essential in A }. Then the index of 
nilpotency of N is less than or equal to the number of layers to which D is linked. 

PROOF. The proof is by induction on the number k of layers to which D is 

linked. 

Case k = 1. D is linked to the first layer of A by definition. Since k = 1, 

EndR (E(A))  is a division ring; so J(EndR (E(A)))= 0. But any f : A  ~ A can 

be extended to g : E(A)---~ E(A) .  If f E N, then g E J(EndR (E(A))) = 0; so 

f = 0 .  Hence N = 0 .  

Assume that the result is true whenever D is linked to less than k layers of a 

quasi-injective uniform module in ~. Let D be linked to exactly k layers of A. 

Let the highest layer of A to which D is linked be the q-th layer. Then Sc~-~(A ) 

is a uniform quasi-injective module in o% such that D is linked to exactly k - 1 

layers of Scq,-~(A). By the induction hypothesis, if 

N'  = {f E EndR (Scq,-'(A)) I ker f is essential}, 

then (N') k ' = 0. 

Let fl, f2 , . . . ,  fk E N. Then the restriction of each j~ to Sc~-t(A) is in N'. Thus 

kerf2f3""fkD_Sc~-l(A). Hence f2f3""fk induces a homomorphism from 
Sc,q(A)/S~ I ( A ) ~  A. By Proposition 1.9 we obtain [2[3"" f~ (Sc~(A)) _C ScT(A) = 

CI, S,(A). Since kerf~ is essential in A, then kerf~ fq C ~ 0  for each nonzero 

r-cocritical submodule C of A. Since A E o%, it follows that fl(S~(A)) = 0 and 

hence that fl(Sc~,(A )) = f~(flT ST (A)) = 0. Therefore, f~f2"" fk (Scq,(A)) = 0. 

We claim that [112" "" fk = 0. For if not, then there exists an integer m => q such 

that f~f2"'" fk (ScT(A)) = 0, but flf2"'" fk (ScT+~(A)) ~ 0. Then f l f z "  fk induces 
a nonzero homomorphism: Sc~+'(A)/ScT(A)~ A C_ E(A) .  By Lemma 4.3, D is 

linked to the (m + 1)-th layer of A, which contradicts our choice of q. Thus 

f, f2"" fk = 0 as desired. 
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